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Ir) and Is) with an arbitrary difference in magnetic quantum numbers prs = A4, 
- A4,. Transverse magnetization corresponds to a particular class of coherence as- 
sociated with a change in quantum number p = f 1. 

Formally, coherence can be conceived as a coherent superposition of two eigenstates 
c-23) 

Icrs = ah) + &). [II 
Such a non-equilibrium state develops in time under the time-independent free 
precession Hamiltonian. In terms of the density operator 0, coherence between the 
states Ir) and IS) is expressed by the existence of nonzero density matrix elements 
urS = Ir)(sl and usr = Is)(rl. These elements indicate a “transition in progress” between 
the two connected states. 

In high-field NMR, each eigenstate Ir) is characterized by a magnetic quantum 
number A4, and each coherence urS by a magnetic quantum number difference 
prs = A4, - kf, which we call “coherence order.” Note that each transition is associated 
with two coherences urS and a,, with coherence orders of opposite sign. The quantities 
M, and prs are “good” quantum numbers,’ and each coherence u, conserves its 
quantum number p,$ in the course of free precession. Radiofrequency (rf) pulses, 
however, may induce a transfer between coherences urs and utu, a process that may 

change the coherence order. 
It is often sufficient to classify the various terms of the density operator according 

to the coherence order p: 
u(t) = 2 uyt). PI 

For a system of K spins l/2, p extends from -K to K. This classification can be 
carried out explicitly if the density operator is expressed in matrix elements, or al- 
ternatively in a suitable set of base operators, such as irreducible tensor operators TIP 
(24, products of shift operators (e.g., Z:Z?) (29, or single-transition shift operators 
(e.g., I+@) = Z?’ + ill”‘). On the other hand, products of Cartesian operators (e.g., 
ZkZ,J (25) or Cartesian single-transition operators Zp) (26, 27) are not particularly 
suitable for a classification according to p. 

The characteristic properties of coherence of order p (or simply “p-quantum co- 
herence”) are demonstrated by the transformation under rotations about the z axis: 

where 
exp{ -isOFz}# exp{ iPF;> = up exp{ -ipP> 

F,= $I,,. 
k=l 

[31 

We found it convenient to represent the sequence of events in various experiments 
in a “coherence transfer map” such as shown in Fig. 1. Free precession proceeds 
within the levels of this map, while pulses may induce “transitions” between coherence 

I This is related to the fact that the Hamiltonian has rotational symmetry. The eigenstate Ir) transforms 
according to the irreducible representation M, of the one-dimensional rotation group (24). Hence Ir)(sl 
transforms according to the representation pr, = M, - M,. 
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FIG. 1. Coherence-transfer maps (CT maps) for various 2D experiments involving three pulses. Solid 
lines indicate pathways that involve a single-order p in the evolution period. For a basic understanding of 
the experiments, these pathways suffice. If pure phase lineshapes am not essential (e.g., if composite lineshapes 
or absolute-value plots are acceptable), it is sufficient to select the pathways shown by solid lines. Mirror- 
image pathways with -p in t, are indicated by dashed lines. For pure phase spectra (i.e., pure 2D absorption 
lineshapes), both solid and dashed pathways must be retained. Four experimental schemes are shown: (a) 
2D exchange spectroscopy (NOESY), (b) relayed correlation spectroscopy (pathways shown for fixed mixing 
interval r,,,), (c) double-quantum spectroscopy and (d) 2D correlation spectroscopy with doublequantum 
filter (rm = 0). 

orders. The route of a particular component of coherence is referred to as a “coherence- 
transfer pathway.” All coherence-transfer pathways of a pulse experiment start with 
p = 0 (thermal equilibrium) and must end with single-quantum coherence to be 
detectable. If we choose to observe the complex signal in the detection interval by 
quadrature detection, 

s’(t) = sAt) + is,(t) = Tr{a(t)l;,} + i Tr{a(t)F,} = Tr{a(t)F+) 

where F+ = & Ik+ , only density operator components proportional to Ii can contribute 
to the signal, and all pathways that do not lead top = - 1 can be disregarded. However, 
as noted by Bain (22), imperfect quadrature detection (i.e., imbalance of the two 
receiver channels) leads to partial observation of single-quantum coherence com- 
ponents with p = + 1. 

The examples in Fig. 1 show the coherence transfer pathways that are relevant to 
four well known techniques involving three consecutive coherence-transfer steps. 
Apart from the incrementation of the intervals in the course of the experimental 
sequence, these methods merely differ in the selection of coherence-transfer pathways. 
A single pathway suffices if absolute-value spectra or phase-sensitive spectra with 
composite (“phase-twisted”) lineshapes are acceptable, while “mirror image” pathways 
(dashed lines in Fig. 1) must be retained simultaneously if pure phase spectra (i.e., 
pure 2D absorption lineshapes) are essential, as will be discussed below. 
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It is important to note that the order p = 0 may comprise Zeeman polarization 
(represented by density operator terms proportional to Zkz), longitudinal scalar or 
dipolar spin order (e.g., ZkzZ& and zero-quantum coherence (e.g., Zk+Z;). This is 
particularly relevant for 2D exchange spectroscopy (Fig. la) (28, 29). In the case of 
relayed magnetization transfer (Fig.lb) (30) the delay T, can be kept constant, in 
which case the sign of the coherence order in T, is irrelevant and two pathways can 
be allowed simultaneously. It is also possible to vary T, in concert with tr (31, 32) 
in which case the pathway selection determines whether the w1 domain will contain 
sums or differences of chemical shifts. In multiple-quantum spectroscopy (Fig. lc) 
(8-Z2), we have the option of observing both +p and -p coherences in the evolution 
period, or we may restrict the transfer as shown by solid lines. In correlation spec- 
troscopy with multiple-quantum filters (Fig. Id) (Z4), it is not necessary to select the 
sign of the coherence order in the T, interval, but one has the option of selecting 
only a = + 1 coherence in the evolution period. 

SELECTION OF COHERENCE-TRANSFER PATHWAYS 

In experiments employing nonselective pulses, numerous coherence-transfer path- 
ways can occur simultaneously. In principle, it is possible to use cascades of selective 
pulses to restrict the number of pathways, but it turns out that phase-shifted nonselective 
pulses provide a more flexible approach to the selection of desirable pathways. 

Consider a complete pulse experiment with n coherence transfer processes expressed 
by the propagators U1, U,, . - - U,,: 

[51 
In the context of 2D spectroscopy, the first propagator typically represents the excitation 
process, while the last propagator corresponds to the conversion into observable 
magnetization. The intermediate propagators, which only occur in some experiments, 
induce coherence transfer between various orders. A propagator may represent a 
single pulse or a sequence of pulses, such as the composite sequence (7r/2)-T-(X)-~- 
(a/2) commonly used for multiple-quantum excitation (25). Each propagator Ui causes 
a transfer of a particular order of coherence aP(t;) into numerous different orders 
u”‘(tt): 

UiaP(tr)U-’ = 2 n*‘(t:) 161 
PS 

where the arguments of the density operators refer to the state just before and im- 
mediately after the transformation by Vi. This leads to a “branching” or “fanning 
out” of the coherence-transfer pathways. After 12 consecutive coherence-transfer steps, 
each pathway can be characterized by a set of IZ values: 

Api = p’(tt) - p(tr) [71 
corresponding to the changes in coherence order under the propagators Ui. The 
complete pathway is therefore specified by a vector 

AP = (API, APZ, . . . > a~,,>. PI 
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Since all pathways must begin with p = 0 and are assumed to end with p = -1 
to be observable (see Eq. [4]), the sum of the components of the vector Ap is fixed, 

2 Api = -1. PI 

Thus if (n - 1) values of Api are specified by (n - 1) independent phase cycles as 
discussed below, the entire vector Ap and hence the complete pathway are defined 
unambiguously. Because the rf phase shifts required for the pathway selection are 
often subject to systematic errors, it may however be advisable in practice to employ 
n independent phase cycles to select the desired Api values under all n coherence 
transfer steps. 

The key to the separation of coherence-transfer pathways is the use of propagators 
Vi(‘Pi) that are shifted in phase 

Ui(Qi) = eXp{ -iQiF,} Vi(O) eXp{ iQiF=}. [lOI 
If a particular propagator U is made up of a sequence of pulses, each constituent 
pulse must be incremented in phase. For example, the excitation sequence commonly 
used in double-quantum spectroscopy becomes (7r/2)V-7-(7r)V-7-(7r/2)(p. 

Under a phase-shifted propagator Ui((Pi), Eq. [6] takes the form 

Ui(‘Pi)d’(tr)U(‘Pi)-’ = 2 a”‘($) exp{-iApiPi>. [Ill 
P’ 

Thus the phase shift of a coherence component that is transferred by the propagator 
Vi is given by Api’Pi. In symbolic notation, Eq. [ 1 I] may be written 

8(tr) “2 2 a”‘($) exp{ -iApi’Pi}. [121 
P) 

After n consecutive coherence-transfer steps, one obtains single-quantum coherence 
components (p = -1) with phases that reflect the pathways Ap and the propagator 
phases Vi: 

ap=-‘(Q,) Qz, . . . ) Q,, t) = op=-‘(Q, = Q* = * * - = Q, = 0, t) 

X exp(-i(Ap,cP1 + Ap2’P2 + - - - + Apn(P,J} [13a] 

= 8-‘(‘P = 0) exp(-iApV} [13bl 
with the vector notation for Ap in Eq. [8] and 

Q = {‘PI, Qz, . . . , Q,}. ]141 

The phase shifts of Eq. [ 131 also occur in the complex signal observed during the 
detection period (Eq. [4]). It is convenient to decompose the signal into contributions 
of individual pathways: 

s(t) = c SAP(l). 1151 
AP 

With a given vector of phase shifts 46, the signal associated with a certain pathway 
carries the phase 

sAp(‘P, t) = sAp(O, t) exp{-ihpv}. 1161 
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The characteristic phase shift in Eq. [ 161 can be used, following Wokaun and Ernst 
(9) to separate the different pathways under a particular propagator Vi by a Fourier 
analysis with respect to the rf phase of this propagator Ui. 

To restrict the coherence transfer under Vi to a particular change Ap; in coherence 
order, we may perform Ni experiments where the rf phase ‘Pi of the propagator is 
incremented systematically: 

‘Pi = ki2r/Ni, ki = 0, 1, . . . 2 Ni - 1. [I71 

The Ni signals S(Qi, t) observed in the detection period are then combined according 
to a discrete Fourier analysis with respect to the phase ‘Pi, 

sApi = i. Nk’ s(Q~, t) exp(iApiQi). 
1 ki=O 

1181 

By this process, all coherence-transfer pathways are selected which undergo a change 
in coherence order Api under the propagator Vi. However, by carrying out a series 
of Ni experiments, it is not possible to select a unique Api, but rather a series of 
values Api -t nNiwith n = 0, 1, 2, . . . . This situation is reminiscent of a&sing in 
Fourier analysis and is a consequence of the sampling theorem. Clearly, if a unique 
Api value must be selected from a range of r consecutive values, Ni must be chosen 
at least equal to r. 

It is useful to exhibit the required selectivity of the phase cycle by listing all possible 
changes in coherence order, for example, 

AP,: -3, -2, -1, CO), Cl), 2, 3, iI91 

where the values of Api that must be blocked are set in parentheses, while the desired 
value is set in boldface. The minimum number of experiments to be performed in 
this case would be Ni = 3. The examples discussed below will illustrate the resulting 
phase cycles. 

In many experiments a more restrictive selection of pathways is desired than can 
be obtained by cycling the phase of a single propagator Vi. In such cases, a desired 
pathway with successive changes in coherence order Ap, , ApZ, . . . , Ap, under the n 
propagators can be retained selectively by cycling the phases of each of the relevant 
propagators U,(Q,), U,(Q,), . . . , U,(Q,) separately: 

Q, = k,2a/N,, . . . , Q, = k,2afN,,, 
for 

k, = 0, 1, . . . , N, - 1, . . . , k,, = 0, 1, . . . , N,, - 1. WI 
A unique prescription for the phase cycle is obtained by incrementing k, through all 
N, steps before incrementing k2. The total number of experiments to be performed 
is determined by the product N = N, * N2.. . . * N,. To select the desired pathway 
characterized by the vector Ap in Eq. [8], the signals must be combined according 
to 

1 N,-1 N-l Nn- 1 

sAp(t) = z C 2 - - - 2 s(t) exp{+iApQ} 1211 
k,=O kz=O kn=O 

where 
ApQ = Aplk,2r/N, + Ap2k22?r/N2 + - - - + Ap,k,,2?r/N,. Pa 
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The principle of the pathway selection becomes obvious by observing that the signal 
s(t) consists of the contributions of all possible pathways Ap’ (see Eqs. [ 151 and [ 161): 

s(t) = C sAp’(O, t) exp(-iAp’9). 
AP’ 

[231 

Clearly, the discrete n-dimensional Fourier analysis in Eq. [2 l] leads to a nonvanishing 
signal for Ap’ = Ap. However, since the selectivity under each propagator vi is 
determined by the number Ni of phase increments, there are a manifold of pathways 
that survive the selection process, with 

Ap = {Ap, f n,N,, Ap, +- n2N2, . . . , Ap, f n,,Nn}. 1241 

Because the maximum order of coherence JpmaxJ G K in a system with K spins l/2, 
and because the amplitude of coherence transfer into very high orders is small, it is 
usually possible to retain a unique pathway by relatively small increment num- 
bers Ni. 

There are three different strategies to achieve the multiplication of the signals by 
the phase factors necessary for the Fourier analysis in Eq. [21]: (a) multiplication of 
the complex signals with complex phase factors (this can be achieved conveniently 
with routine phase-correction procedures); (b) phase-shifting of all pulses in the se- 
quence through C Api’Pi and addition of the signals without weighting; (c) shifting 
of the phase of the receiver reference channel. Strategy (c) was adopted in the ex- 
perimental examples discussed below. With the definition of the observable operator 
F+ in Eq. [4], the reference phase must be (oref = - C Api’Pi. The opposite phase shift 
must be applied if the observable operator is F-, in which case the pathways terminate 
at the level p = +l. 

The parameters involved in Eq. [21] are shown schematically in Fig. 2 for a hy- 
pothetical experiment involving three coherence-transfer steps. To select the desired 
pathway, the reference channel of the phase-sensitive detector (PSD) can be shifted 
in phase as indicated in the figure. 

PURE 2D ABSORPTION LINESHAPES 

In the evolution period t,, there are always two coherences associated with each 
transition Ir) c-f Is) that have opposite orders p = M, - M, and p’ = -p and opposite 
frequencies. If the two coherence-transfer pathways +p - - 1 and -p - - 1 are both 
allowed, the counterrotating components lead, after complex Fourier transformation 
with respect to t,, to signals that are symmetrically disposed about w1 = 0. Each 
signal has a lineshape that consists of an admixture of 2D absorption and 2D dispersion 
components (1). This composite lineshape is often referred to as a “phase-twisted” 
lineshape (33). 

Consider by way of example a 2D correlation spectrum (COSY) (1-4) obtained 
with the basic pulse sequence (7r/2)X-tl-(/3)rp--t2 and complex Fourier transformation 
in both dimensions. The schematic spectrum in Fig. 3a shows only diagonal peaks 
for clarity. The peaks that appear symmetrically with respect to w1 = 0 (open and 
filled symbols) have been referred to as “P-type” and “N-type” signals (3) or “anti- 
echoes” and “echoes” (4). In terms of coherence transfer, these signals result from 
p = 0 - - 1 --) - 1 and p = 0 - + 1 - -1 pathways, respectively. 
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I 
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I 

FIG. 2. The selection of a coherence transfer pathway, characterized in this hypothetical example by the 
changes in coherence order Ap, = +3, Ap, = -7, and Ap, = +3, can be achieved by cycling the phases 
of the three coherence transfer pulses and by shifting the phase of the reference channel of the phase- 
sensitive detector (PSD). 

If the two frequency components at +o, have equal amplitude, a real Fourier 
transformation with respect to I, leads to a symmetrical superposition of the signals 
associated with mirror-image pathways 0 - +p - -1 and 0 - -I, - - 1: This 
superposition yields pure lineshapes, i.e., either pure 2D absorption or pure 2D dis- 
persion (33, 34). Pure phase is obtained regardless of inhomogeneous broadening, 
which may however lead to different lineshapes and different peak heights of the two 
components. 

Cross-peaks in COSY spectra and remote connectivity signals in double-quantum 
spectra (11) are symmetrical for mixing pulses with arbitrary @ Diagonal peaks in 
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FIG. 3. (a) Schematic representation of the diagonal peaks in single-quantum correlation spectroscopy 
(COSY) with complex Fourier transformation in both dimensions. All signals have composite (phase- 
twisted) lineshapes; filled symbols correspond to p = 0 - + I - - 1 pathways (“N peaks”), open symbols 
are associated with p = 0 - - 1 - - 1 pathways (“P peaks”). If the amplitudes of the two classes are equal, 
pure phase spectra can be obtained by a real Fourier transformation with respect to I,. If the carrier is 
positioned within the spectrum, the two classes of signal overlap. (b) The two types can be separated by 
incrementing the rfphase of the initial preparation pulses in concert with the evolution time (TPPI procedure). 
The principle is applicable to home- and heteronuciear single- and multiple-quantum spectra. 
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COSY spectra of weakly coupled systems and direct connectivity signals in multiple- 
quantum spectra have symmetrical amplitudes only for @ = r/2. 

The overlap of the two classes of signal in Fig. 3a is undesirable and complicates 
the analysis. To separate the two classes, three strategies can be employed: 

(a) If the carrier is positioned outside the spectrum, the two types of signals do 
not overlap, and both can be retained with a phase cycle with 2p steps. In the case 
of single-quantum correlation spectroscopy, the cycle boils down to a two-step phase 
alternation for the elimination of axial peaks. 

(b) By means of a phase cycle with N > 2p + 1, it is possible to select one type 
of signal irrespective of the position of the carrier. The selection of a single pathway 
invariably leads to composite lineshapes. However, by properly combining the signals 
originating from the two pathways 0 - +p - - 1 and 0 - -p - - 1, it is possible 
to obtain pure phase spectra. Note that the two classes of signals can be extracted 
from the same set of N experiments with the Fourier analysis given in Eq. [ 181. 
Separate complex Fourier transformations lead to two spectra analogous to Fig. 3a, 
one with filled symbols only, the other with open symbols. After reversal of the o, 
axis in one of the spectra, the addition of the two matrices leads to pure phase 
lineshapes. In the case of single quantum spectroscopy, it is of course possible to use 
iV = 4 > 2p + 1, and the procedure is equivalent to the linear combinations described 
by Bachmann et al. (35) and States et al. (36). 

(c) Alternatively, it is possible to shift the signals in the wI domain in such a way 
that the two classes of signal do not overlap even if the carrier is positioned within 
the spectrum. In the context of 1D spectroscopy, it has been shown that the effective 
receiver reference frequency can be shifted with respect to the transmitter carrier 
frequency by recording a free induction decay where the receiver reference phase is 
incremented for subsequent sampling points (37). The same idea can be incorporated 
in the w2 (38) and w, domains (39) of 2D spectra. In the latter case, the experimental 
procedure closely resembles a method that has found widespread use in multiple- 
quantum NMR, known as “time-proportional phase incrementation” (TPPI) (8, 40). 
To obtain pure lineshapes, the rf phase of the excitation propagator is incremented 
in concert with t, according to 

WI 

where IpI is the order of multiple-quantum coherence evolving in tl . The characteristic 
transformation of p-quantum coherence under rf phase shifts causes signals with 
opposite orders p and p’ = -p to shift in opposite directions by (4At,))‘. The case 
of single-quantum correlation spectroscopy (COSY) is shown schematically in Fig. 
3b. If the amplitudes are symmetrical, a real Fourier transformation can be calculated 
with respect to t, to obtain pure phase spectra (41). 

An advantage of strategies (b) and (c) in comparison to (a) is the possibility of setting 
the carrier in the center of the spectrum, which reduces rf power requirements. With 
regard to data storage requirements, strategy (b) with the selection of a single pathway 
is most economical. This method is sufficient for absolute-value displays. 

Pure phase spectra obtained with strategies (b) and (c) require twice as much data 
storage space, while pure phase spectra obtained with method (a) demand a fourfold 
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number of points in time domain (since twice the number of points must be recorded 
in t2). Clearly, strategy (c) is of particular simplicity with regard to data handling. 
This TPPI procedure for generating pure phase spectra will be discussed in the examples 
in the following sections. 

HOMONUCLEAR CORRELATION SPECTROSCOPY 

In situations where pure 2D absorption is not essential, it is possible to simplify 
homonuclear correlation spectra obtained with the basic pulse sequence (a/2)-t,- 
(P)+ by retaining only p = 0 - + 1 - -1 (“Npeaks”). This approach yields spectra 
with minimum o1 bandwidth, similar to those of Fig. 3a but where the signals indicated 
by open symbols are eliminated by phase cycling. The required selectivity of the 
mixing process 

Ap,: -3, I-2, (-l), (0% 1, 2, 3 P61 
can be achieved with a three-step cycle with N2 = 3, with mixing pulse phases 
VZ = 0, 2~13, and &r/3, and receiver phases (bref = 0, &r/3, and 2x13. Aliasing in 
the resulting three-point Fourier transform leads to the selection of a periodic series 
of Ap values with identical behavior. The fundamental period is set between bars in 
Eq. [26]. The additional pathways that are retained (ApZ = - . . -5, 1, 4, - - - ) are 
not relevant in this experiment. 

To avoid the uncommon phase shifts of 2n/3 and 47r/3, it is of course allowed to 
select N2 = 4, 

APZ: -3, l-2, (-I)> (O), 11, 2, 3 ]271 
which leads to four experiments with mixing phases (P2 = 0, 7~12, a, and 3~12, and 
receiver phases pef = 0, K, 0, s (i.e., alternating addition and subtraction of the 
signals). This cycle is equivalent to “Exorcycle” (42) and has been used in standard 
SECSY spectroscopy (2, 3) in heteronuclear 2D correlation spectroscopy (43, 44) 
and in heteronuclear relayed magnetization transfer (31, 32). In cases where two 
consecutive coherence-transfer steps call for two selection cycles, significant time 
savings can be obtained by reducing the total number of complementary experiments 
NZ - N3 from 42 = 16 to 32 = 9 by using three-step cycles. 

To obtain 2D correlation spectra with pure phase with the TPPI procedure, both 
pathways p = 0 - +1 - -1 and p = 0 - - 1 - -1 have to be retained. The 
required selectivity of the mixing process 

Ap2: -2, (-l), 0 WI 
can be achieved with a two-step cycle (N2 = 2, (Pk = 0, a; Vef = 0, 0). 

2D EXCHANGE SPECTROSCOPY (NOESY) 

The coherence-transfer pathways that may occur in 2D exchange spectroscopy (28, 
29) are shown in Fig. la. If pure 2D absorption lineshapes are not required, it is 
possible to select the pathway p = 0 + +1 - 0 - -1 by cycling the phase of the 
first pulse to select 

API : (-I), (O), 1 v91 

while the third pulse must achieve the selection 

Ap,: (-pm= - l), . . ., -1, . . ., (pm,’ - 1) 1301 
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where pma” . is the highest order of multiple-quantum coherence that can contribute 
significantly, which depends on the number of coupled nuclei. Except for the desired 
value Ap = -1, all Ap values in the interval given in Eq. [30], including the limits 
which are set in brackets, must be suppressed. This can be achieved with a cycle 
IV1 - N3 = 3 - (p”” + 1) steps. 

If pure 2D absorption lineshapes are to be obtained, two pathways must be retained 
with p = 0 - f 1 - 0 --+ - 1. This task can be accomplished by eliminating longitudinal 
magnetization in the evolution period: 

Ap,: - 1, m, +1 [311 
and by selecting the transfer 0 - -1 by cycling the third pulse: 

Ap3: (-pm” - l), . . ., -1, . . ., (pm= - 1) 1321 
which can be achieved with a cycle of N, -IV3 = 2 * (p”“” + 1). For pm” = 3, the 
cycling of the last pulse and the receiver phase (Vgref = k7r/2) corresponds to the well- 
known “Cyclops” sequence (22, 45). 

The shortest possible phase cycles (irreducible cycles) are shown in Table 1 for 
systems without resolved couplings (pm” = 1) and in Table 2 for coupled systems 
,&h pmax = 3. The abbreviation TPPI (time proportional phase shift) indicates that 
the first pulse must be incremented in phase by A’P, = 7rt1/(2Atl). 

In practice, it may be advisable to use more extensive phase cycles, particularly if 
the rf phase shifts are subject to systematic errors. Thus Table la can be extended 

TABLE 1 

PHASE CYCLES FOR 2D EXCHANGE SPECTROSCOPY 

(a) Spin system without resolved couplings (p”‘” = 1): Selection of 
p = 0 - +l - 0 - -1 pathway 

Ap, = +I Ap, = free Am = -1 
Cp, = TPPI ‘pz = 0 ‘PJ = 0 pf = 0 

= 2?r/3 + TPPI = 0 = 0 = h/3 
= 4a/3 + TPPI zz 0 = 0 = 2~13 
= TPPI = 0 K =T 
= 2rr/3 + TPPI zz 0 7r = n/3 
= &r/3 + TPPI zz 0 =K = 2~13 

(b) Spin system without resolved couplings (p’“” = 1): Selection of 
p=O-fl-O+-lpathwaystoobtain 

pure 2D absorption lineshapes 

Ap, = fl Ap2 = free Ap, = fl 
‘p, = TPPI ‘p*=o P, =o p = 0 

= K + TPPI =o = 0 K 
= TPPI cz 0 lr 7r 
= ?r + TPPI =o P =o 
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TABLE 2 

PHASE CYCLE FOR 2D EXCHANGE SPECTROSCOPY 

Coupled spins with 6”“” = 3: Selection of p = 0 - f 1 - 0 - -I 
to obtain pure 2D absorption lineshapes 

Ap, = +l Apz = free Aps = -I 
Cp, = TPPI ‘pz = 0 ‘pj = 0 cp=f = 0 

= x + TPPI =o = 0 7T 
= TPPI =o = ?r/2 = ?r/2 
= * + TPPI =o = *I2 = 3x12 
= TPPI = 0 T K 
= T + TPPI =o =A zz 0 
= TPPI = 0 = 3~12 = 3~12 
= K + TPPI = 0 = 3nJ2 = r/2 

by specifying that Apz must be - 1 with N2 = 3(‘P2 = k,2a/3, k2 = 0, 1, 2) with an 
additional shift of the receiver reference phase A’P”‘ = k22n/3, Tables lb and 2 can 
be extended by specifying that Ap2 must be fl with N2 = 2(‘Pz = kz?r, k2 = 0, 1) 
with an additional shift of the reference phase AP”‘ = k,a. These additions are strictly 
speaking redundant, but may improve the degree of suppression in practical circum- 
stances. 

CORRELATION SPECTROSCOPY WITH MULTIPLE-QUANTUM FILTERS 

Recently, a modification of homonuclear correlation spectroscopy has been proposed 
where coherence is transferred in two steps via multiple-quantum coherence in order 
to edit 2D spectra (14, 1.5). 

The coherence transfer pathways that are relevant to double-quantum filtered cor- 
relation spectroscopy are shown in Fig. Id. If pure 2D absorption lineshapes are not 
required, the transfer can be restricted to the two pathways 0 - +l - +2 - -1 
and 0 - + 1 - -2 - - 1 by selecting the following Ap values in the first and third 
pulse 

API : (- I), (Oh 1 [331 

AP,: -3, (-2), C-l), (Oh 1 [341 

which requires a cycle with Ni * N3 = 3 -4 = 12 steps. To avoid uncommon phase 
shifts, we can of course select the desired pathway with a 16-step cycle. 

In general if the filtration procedure is supposed to retain orders kp, and if pure 
phase lineshapes are not required, it is sufficient to select 

API : (- I), (Oh 1 1351 

Ap,: -p-l, . . . , p-l, [361 
where all Ap3 values in the interval between the desired values must be blocked, 
which requires a cycle with N, . N3 = 3 -2p experiments. 
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To obtain pure 2D absorption lineshapes, the four pathways 0 - + 1 - kp - - 1 
and 0 + - 1 - +p - - 1 must be allowed simultaneously. The pathway 0 - 0 - 
kp - - 1 is impossible, since the second nonselective pulse cannot transform lon- 
gitudinal polarization into multiple-quantum coherence. It is therefore possible to 
allow all pathways under the first two pulses, and to select the two pathways +p - 
- 1 and -p - - 1 under the last pulse: 

Ap,: -p-l, . . +, p-l, 1371 

where all values between the limits must be suppressed. This can be achieved with 
a cycle with N3 = 2p steps. In the case of double-quantum filtered correlation spec- 
troscopy one obtains N3 = 4 with rf phases (oj = 0, ?r/2, ?r, 3x12 and receiver phases 
cPRf = 0, 3*/2, ?r, 7r/2. This cycle corresponds to well-known procedures for double- 
quantum selection (7, 9). 

The selection of the pathways 0 - + 1 - kp - - 1 has been tested experimentally 
by recording homonuclear proton 2D correlation spectra of thymidine. All three 
spectra in Fig. 4 were obtained with delayed acquisition, according to the scheme 
known as “spin-echo correlation spectroscopy” (SECSY) (2, 3). This representation 
relies on the suppression of 0 - - 1 - kp - - 1 signals (so-called “P peaks”), since 
this is a condition for reducing the w, bandwidth (3). The conventional SECSY 
spectrum (Fig. 4a) can be simplified with a double-quantum filter (Fig. 4b) which in 
effect eliminates the responses of isolated spins. If a triple-quantum filter (Fig. 4c) is 
used, only signals stemming from subunits with at least three coupled protons survive, 
in accordance with coherence transfer selection rules (II, 14). 

MULTIPLE-QUANTUM SPECTROSCOPY 

In conventional two-dimensional p-quantum spectra (8-1Z), the coherences of 
order +p and -p lead to pairs of signals symmetrically disposed about wi = 0. If the 
mixing propagator consists of a single pulse with @ = 7r/2, these signals have equal 
amplitudes (11). If both types of signals are retained, pure 2D absorption lineshapes 
can be obtained with the procedures described above. If, on the other hand, the 
0 + * 1 - +p - - 1 pathways are selected, the bandwidth in the w1 domain can be 
reduced, although at the expense of pure 2D absorption lineshapes. This selection 
has been achieved with z rotations (46) with phase shifts in increments of 7r/4 (47) 
and, for the special case of two-spin systems, by exploiting the dependence on the 
rotation angle of the rf pulse (48) and can also be achieved with field gradient 
pulses (49). 

In the case of double-quantum spectroscopy, shown schematically in Fig. lc, the 
phase of the mixing pulse (or of the sequence of pulses that constitute the mixing 
propagator) can be cycled in order to select the pathways that involve coherence of 
order p = +2 in t,: 

APT: -4, -3, C--2), t-l), 6% (11, 2, 3. [381 

Values with Ap, < -3 or Ap, > 1 are irrelevant if we assume that there are no 
coherences of order IpI > 2 in the evolution period. In this case, a five-step cycle with 
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TABLE 3 

PHASE CYCLE FOR DOUBLE-OUANTUM SPECTROSCOPY 

Selection of p = 0 - f 1 - +2 - - 1 pathway 
in systems with p”” = 3 

Ap, = free Ap2 = free 
v, = 0 ‘p2 = 0 

=o =o 
=o 0 
=o =o 
zz 0 0 
= 0 =o 

Ap, = -3 
v* = 0 $o=f = 0 

= */3 * 
= 2~13 0 
=7f =* 
= 443 =o 
= 5743 =* 

Ns = 5 is sufficient. If the transfers p = +3 - -1 must be suppressed as well, 
we select Ns = 6. By way of example, the six-step cycle is shown in Table 3; this 
cycle has been used for simplifying the experimental double-quantum spectrum dis- 
cussed below. 

Selective observation of the 0 - +l - +3 - -1 pathway in triple-quantum 
spectroscopy can be achieved with 

AP,: -4, C-3), t-2), t-l), (Oh (11, (21, 3 [391 

which can be realized with iV3 2 7. If p = *4 - - 1 transfers are to be suppressed 
as well, it is necessary to use a cycle with N3 3 8. 

If pure 2D absorption lineshapes are required, the pathways involving the coherence 
orders +p and -p in the evolution period must be retained simultaneously. In the 
case of double-quantum spectroscopy, the selection 

AP,: -4, -3, t-2), t-11, (O), 1, 2, 3. [401 

can be achieved with N3 = 4. In general, simultaneous transfer is possible with 
Ns = 2p experiments. Such cycles have been used in many applications of multiple- 
quantum NMR (9, II). 

The selection of the p = 0 - + 1 - +2 - - 1 pathway in double-quantum spectra 
makes it possible to delay the beginning of data acquisition to a point in time 2ti 
after initial excitation (50-52). This procedure causes the signals to shift in the o1 
domain, as shown in Fig. 5, leading to a presentation of double-quantum spectra 
that closely resembles the familiar picture of single-quantum correlation spectra 
(COSY). The signals associated with directly connected pairs of nuclei are indicated 
by filled symbols. They are contained within a frequency band indicated by dotted 
lines (53). Signals associated with remote connectivity, which arise from double- 
quantum coherence involving two nuclei A and M that is transferred to a third nucleus 
X (II), are indicated by open symbols. These signals, which may fall outside the 
frequency band indicated by dotted lines, cannot occur in double-quantum spectra 
of two-spin systems, e.g., in INADEQUATE spectra of carbon- 13 in natural abundance. 
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I -0 _.... . . . . . . * , I/’ / , 
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/’ 0’ , ,’ #’ 2. . . . . 

A M X A M X 
FIG. 5. Schematic representations of +2-quantum spectra of a three-spin AMX system obtained with 

selection of the pathways 0 - + 1 - +2 - - 1 (Fig. Ic). (a) Conventional form, (b) COSY-like representation 
obtained by delaying the acquisition to 2t, after initial excitation. Filled and open symbols represent signals 
associated with directly and remotely connected nuclei (II). The former fall within a frequency band 
indicated by dotted lines. The virtual diagonals are indicated by dashed lines. In the COSY-like representation 
(b), the filled symbols appear at the same frequency coordinates as cross-peaks in conventional single- 
quantum COSY spectra. Additional information can be derived from the remote connectivity signals. For 
example, the signal at the bottom right stems from double-quantum coherence involving the nuclei A and 
M that is transferred into observable X magnetization. Its location is found by drawing a line through the 
two A, M cross-peaks (see arrows). 

In this case the W, bandwidth may be reduced by a factor of two without loss of 
information. 

An experimental example of a double-quantum spectrum in COSY-like represen- 
tation is shown in Fig. 6. The signals associated with remote connectivity do not 
have symmetrically related counterparts and can be eliminated by symmetrization. 
The remaining signals, which correspond to filled symbols in Fig. 5b, have the same 
frequency coordinates (and the same information content) as cross-peaks in single- 
quantum correlation spectra. 

It should be noted that experimental methods involving delayed acquisition suffer 
from sensitivity losses due to transverse relaxation after the mixing pulse. The same 
COSY-like representation could be obtained with better sensitivity and pure phase 
lineshapes by a mathematical transformation of a double-quantum spectrum ob- 
tained without delayed acquisition, in analogy to the foldover correction procedure 
(FOCSY) (3). 

CONCLUSIONS 
Our recent experience has shown that coherence-transfer maps which portray the 

relevant coherence-transfer pathways are powerful tools for understanding and de- 
signing new pulse experiments. In several cases, the pulse sequence alone does not 
characterize the essential features of an experiment. It is rather the selection of specific 
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- -0.5 

- *1p 

B C DE F GH I K 

hL, 
9 8 7 6 5 4 3 2 1 S Ippml 

FIG. 6. Absolute-value double-quantum spectrum of thymidine (assignment as in Fig. 4), presented in 
COSY-like form with selection of the solid pathways in Fig. Ic and delayed acquisition, as shown schematically 
in Fig. 5b. The carrier was positioned at the high-field end of the spectrum. Symmetrical excitation and 
detection was used with the pulse sequence (?r/2)~--7-(*)~-T-(1r/2)*f1~~/2)~---7~?r)x-7~?r/2)~-fI-(acquisition) 
as described by Sorensen et al. (54). The phase of the detection sandwich was cycled in increments of 
2n/6 (60”). Same sample and conditions as in Fig. 4. 

coherence-transfer pathways by an appropriate phase cycle which constitutes the 
essence of an experiment. For example, three-pulse experiments can be designed for 
relayed coherence transfer, for 2D exchange spectroscopy, for multiple-quantum fil- 
tering, and for multiple-quantum spectroscopy merely by selecting different coherence- 
transfer pathways. 

At first sight it may appear unnecessary and artificial to distinguish the sign of the 
order of coherence. However, despite the Hermitian character of operators in quantum 
mechanics, it is indeed possible to trace out individual pathways violating Hermitian 
symmetry by combining results obtained from a phase-cycled sequence of experiments. 
In actual fact, it turns out that the distinction of the sign of coherence is of central 
importance for the design of optimized experiments. 

In the practical examples described in this paper, phase cycles have been confined 
to individual pulses. It should however be noticed that the formalism is more general 
and also allows phase-cycling of entire groups of pulses as well as interlaced phase 
cycles of different hierarchy. 
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The discovery that many of the commonly used four-step phase cycles can in 
principle be replaced by shorter three-step phase cycles may serve as an example 
illuminating the power of coherence-transfer pathway considerations. It is likely that 
the same concepts can also help in the design of pulse experiments in electron spin 
resonance and in optical spectroscopy. 
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